Application of Data Approximation and Classification in Measurement Systems - Comparison of “Neural Network” and “Least Squares” Approximation
نویسندگان
چکیده
In measurement systems, environmental conditions are measured based on predefined scenarios. Measured data are then processed in either a decentralized or centralized manner. In advanced systems (especially for distributed data processing), taking artificial intelligence features into consideration could improve measurement performance and reliability. It is assumed as autonomy in measurement system which leads to distributed “intelligent data measurement and processing”. In this paper, two different methodologies for “temperature prediction” are compared. A discussion concerning the classification of recorded data is then presented. Both a mathematical approach, the so-called “least squares” approach, and a model-free approach, called back-propagation, are applied and compared for temperature approximation. After approximation, the predicted temperature values are compared with real temperature records for classification purposes. The “classification mechanism” includes signal processing features for improving performance.
منابع مشابه
Inverse modeling of gravity field data due to finite vertical cylinder using modular neural network and least-squares standard deviation method
In this paper, modular neural network (MNN) inversion has been applied for the parameters approximation of the gravity anomaly causative target. The trained neural network is used for estimating the amplitude coefficient and depths to the top and bottom of a finite vertical cylinder source. The results of the applied neural network method are compared with the results of the least-squares stand...
متن کاملGDOP Classification and Approximation by Implementation of Time Delay Neural Network Method for Low-Cost GPS Receivers
Geometric Dilution of Precision (GDOP) is a coefficient for constellations of Global Positioning System (GPS) satellites. These satellites are organized geometrically. Traditionally, GPS GDOP computation is based on the inversion matrix with complicated measurement equations. A new strategy for calculation of GPS GDOP is construction of time series problem; it employs machine learning and artif...
متن کاملLeast Squares Support Vector Machine for Constitutive Modeling of Clay
Constitutive modeling of clay is an important research in geotechnical engineering. It is difficult to use precise mathematical expressions to approximate stress-strain relationship of clay. Artificial neural network (ANN) and support vector machine (SVM) have been successfully used in constitutive modeling of clay. However, generalization ability of ANN has some limitations, and application of...
متن کاملVerification of an Evolutionary-based Wavelet Neural Network Model for Nonlinear Function Approximation
Nonlinear function approximation is one of the most important tasks in system analysis and identification. Several models have been presented to achieve an accurate approximation on nonlinear mathematics functions. However, the majority of the models are specific to certain problems and systems. In this paper, an evolutionary-based wavelet neural network model is proposed for structure definiti...
متن کاملEngineering Application Of Correlation on Ann Estimated Mass
A functional relationship between two variables, applied mass to a weighing platform and estimated mass using Multi-Layer Perceptron Artificial Neural Networks is approximated by a linear function. Linear relationships and correlation rates are obtained which quantitatively verify that the Artificial Neural Network model is functioning satisfactorily. Estimated mass is achieved through recallin...
متن کامل